1 #LyX 2.1 created this file. For more info see http://www.lyx.org/
7 %\renewcommand*{\chapterheadstartvskip}{\vspace*{1cm}}
8 %\renewcommand*{\chapterheadendvskip}{\vspace{2cm}}
10 \use_default_options true
11 \maintain_unincluded_children false
13 \language_package default
16 \font_roman TeX Gyre Pagella
18 \font_typewriter default
20 \font_default_family default
21 \use_non_tex_fonts true
27 \default_output_format pdf4
29 \bibtex_command default
30 \index_command default
31 \paperfontsize default
34 \pdf_title "Sähköpajan päiväkirja"
35 \pdf_author "Marek Nečada"
37 \pdf_bookmarksnumbered false
38 \pdf_bookmarksopen false
39 \pdf_bookmarksopenlevel 1
47 \use_package amsmath 1
48 \use_package amssymb 1
51 \use_package mathdots 1
52 \use_package mathtools 1
54 \use_package stackrel 1
55 \use_package stmaryrd 1
56 \use_package undertilde 1
58 \cite_engine_type default
62 \paperorientation portrait
76 \paragraph_separation indent
77 \paragraph_indentation default
78 \quotes_language swedish
81 \paperpagestyle default
82 \tracking_changes false
91 \begin_layout Standard
92 \begin_inset FormulaMacro
93 \newcommand{\vect}[1]{\mathbf{#1}}
97 \begin_inset FormulaMacro
98 \newcommand{\ud}{\mathrm{d}}
105 Electromagnetic multiple scattering, spherical waves and ****
112 \begin_layout Chapter
113 Zillion conventions for spherical vector waves
116 \begin_layout Section
117 Legendre polynomials and spherical harmonics: messy from the very beginning
120 \begin_layout Standard
121 \begin_inset Marginal
124 \begin_layout Plain Layout
125 FIXME check the Condon-Shortley phases.
133 \begin_layout Standard
134 Associated Legendre polynomial of degree
135 \begin_inset Formula $l\ge0$
139 \begin_inset Formula $m,$
143 \begin_inset Formula $l\ge m\ge-l$
146 , is given by the recursive relation
149 P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{Condon-Shortley phase}}\frac{1}{2^{l}l!}\left(1-x^{2}\right)^{m/2}\frac{\ud^{l+m}}{\ud x^{l+m}}\left(x^{2}-1\right)^{l}.
154 There is a relation between the positive and negative orders,
157 \begin_layout Standard
160 P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{C.-S. p.}}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0.
166 \begin_inset Formula $l$
169 (in certain notations, it is often
170 \begin_inset Formula $n$
178 \begin_inset Formula $m$
186 These two terms are then transitively used for all the object which build
187 on the associated Legendre polynomials, i.e.
188 spherical harmonics, vector spherical harmonics, spherical waves etc.
191 \begin_layout Subsection
195 \begin_layout Standard
196 Kristensson uses the Condon-Shortley phase, so (sect.
200 \begin_layout Standard
203 Y_{lm}\left(\hat{\vect r}\right)=\left(-1\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}P_{l}^{m}\left(\cos\theta\right)e^{im\phi}
211 Y_{lm}^{\dagger}\left(\hat{\vect r}\right)=Y_{lm}^{*}\left(\hat{\vect r}\right)
219 Y_{l,-m}\left(\hat{\vect r}\right)=\left(-1\right)^{m}Y_{lm}^{\dagger}\left(\hat{\vect r}\right)
227 \begin_layout Standard
231 \int Y_{lm}\left(\hat{\vect r}\right)Y_{l'm'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{ll'}\delta_{mm'}
239 \begin_layout Section
243 \begin_layout Subsection
245 \begin_inset CommandInset label
254 \begin_layout Standard
258 \begin_layout Standard
261 \pi_{mn}\left(\cos\theta\right) & = & \frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
262 \tau_{mn}\left(\cos\theta\right) & = & \frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)=-\left(\sin\theta\right)\frac{\ud P_{n}^{m}\left(\cos\theta\right)}{\ud\left(\cos\theta\right)}
270 \begin_layout Standard
272 \begin_inset Formula $\left(\sin\theta\right)^{-1}$
276 \begin_inset Formula $\frac{\ud P_{n}^{m}\left(\cos\theta\right)}{\ud\left(\cos\theta\right)}$
280 \begin_inset Formula $\cos\theta=\pm1$
284 \begin_inset Formula $\tau_{mn}\left(\pm1\right),\pi_{mn}\left(\pm1\right)$
289 \begin_inset Formula $x\equiv\cos\theta$
293 \begin_inset Formula $\sqrt{\left(1+x\right)\left(1-x\right)}=\sqrt{1-x^{2}}\equiv\sin\theta$
296 and using the asymptotic expression (DLMF 14.8.2) we obtain that the limits
298 \begin_inset Formula $m=\pm1$
304 \pi_{1\nu}(+1-) & = & CS\frac{\nu\left(\nu+1\right)}{2}\\
305 \tau_{1\nu}(+1-) & = & CS\frac{\nu\left(\nu+1\right)}{2}
310 and using the parity property
311 \begin_inset Formula $P_{n}^{m}\left(-x\right)=\left(-1\right)^{m+n}P_{n}^{m}\left(x\right)$
317 \pi_{1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\frac{\nu\left(\nu+1\right)}{2}\\
318 \tau_{1\nu}(-1+) & = & CS\left(-1\right)^{\nu}\frac{\nu\left(\nu+1\right)}{2}
324 \begin_inset Formula $m=1$
327 , we simply use the relation
328 \begin_inset Formula $P_{n}^{-m}=\left(CS\right)^{m}P_{n}^{m}\frac{\left(n-m\right)!}{\left(n+m\right)!}$
334 \pi_{-1\nu}(+1-) & = & \frac{CS}{2}\\
335 \tau_{-1\nu}(+1-) & = & -\frac{CS}{2}\\
336 \pi_{-1\nu}(-1+) & = & -\left(-1\right)^{\nu}\frac{CS}{2}\\
337 \tau_{-1\nu}(-1+) & = & -\left(-1\right)^{\nu}\frac{CS}{2}
343 \begin_inset Formula $CS$
347 \begin_inset Formula $-1$
350 if the Condon-Shortley phase is employed on the level of Legendre polynomials,
354 \begin_layout Subsection
358 \begin_layout Standard
361 \tilde{\pi}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
362 \tilde{\tau}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)
370 \begin_layout Standard
371 The limiting expressions are obtained simply by multiplying the expressions
374 \begin_inset CommandInset ref
376 reference "sub:Xu pitau"
380 by the normalisation factor,
383 \tilde{\pi}_{1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
384 \tilde{\tau}_{1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
385 \tilde{\pi}_{1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
386 \tilde{\tau}_{1\nu}(-1+) & = & CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}
394 \tilde{\pi}_{-1\nu}(+1-) & = & CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
395 \tilde{\tau}_{-1\nu}(+1-) & = & -CS\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}}{2}\\
396 \tilde{\pi}_{-1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}\left(\nu+2\right)}{2}\\
397 \tilde{\tau}_{-1\nu}(-1+) & = & -CS\left(-1\right)^{\nu}\sqrt{\frac{2\nu+1}{4\pi}}\frac{\sqrt{\nu\left(\nu+1\right)}\left(\nu+2\right)}{2}
404 \begin_inset Formula $m=-1$
408 \begin_inset Formula $m=1$
411 except for the sign if Condon-Shortley phase is used on the Legendre polynomial
415 \begin_layout Section
416 Vector spherical harmonics (?)
419 \begin_layout Subsection
423 \begin_layout Standard
424 Original formulation, sect.
428 \begin_layout Standard
431 \vect A_{1lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{1}{\sin\theta}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\nonumber \\
432 & = & \frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect rY_{lm}\left(\hat{\vect r}\right)\right)\nonumber \\
433 \vect A_{2lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\label{eq:vector spherical harmonics Kristensson}\\
434 & = & \frac{1}{\sqrt{l\left(l+1\right)}}r\nabla Y_{lm}\left(\hat{\vect r}\right)\nonumber \\
435 \vect A_{3lm}\left(\hat{\vect r}\right) & = & \hat{\vect r}Y_{lm}\left(\hat{\vect r}\right)\nonumber
443 \int\vect A_{n}\left(\hat{\vect r}\right)\cdot\vect A_{n'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{nn'}
449 \begin_inset Formula $\mbox{ }^{\dagger}$
452 means just complex conjugate, apparently (see footnote on p.
456 \begin_layout Subsection
460 \begin_layout Standard
461 \begin_inset CommandInset citation
464 key "jackson_classical_1998"
471 \vect X_{lm}(\theta,\phi)=\frac{1}{\sqrt{l(l+1)}}\vect LY_{lm}(\theta,\phi)
477 \begin_inset CommandInset citation
480 key "jackson_classical_1998"
487 \vect L=\frac{1}{i}\left(\vect r\times\vect{\nabla}\right)
492 for its expression in spherical coordinates and other properties check Jackson's
493 book around the definitions.
496 \begin_layout Standard
498 \begin_inset CommandInset citation
501 key "jackson_classical_1998"
508 \int\vect X_{l'm'}^{*}\cdot\vect X_{lm}\,\ud\Omega=\delta_{ll'}\delta_{mm'}
516 \begin_layout Standard
518 \begin_inset CommandInset citation
521 key "jackson_classical_1998"
528 \sum_{m=-l}^{l}\left|\vect X_{lm}(\theta,\phi)^{2}\right|=\frac{2l+1}{4\pi}
536 \begin_layout Section
537 Spherical Bessel functions
538 \begin_inset CommandInset label
540 name "sec:Spherical-Bessel-functions"
547 \begin_layout Standard
552 \begin_layout Standard
553 The radial dependence of spherical vector waves is given by the spherical
554 Bessel functions and their first derivatives.
555 Commonly, the following notation is adopted
558 z_{n}^{(1)}(x) & = & j_{n}(x),\\
559 z_{n}^{(2)}(x) & = & y_{n}(x),\\
560 z_{n}^{(3)}(x) & = & h_{n}^{(1)}(x)=j_{n}(x)+iy_{n}(x),\\
561 z_{n}^{(4)}(x) & = & h_{n}^{(2)}(x)=j_{n}(x)-iy_{n}(x).
567 \begin_inset Formula $j_{n}$
570 is the spherical Bessel function of first kind (regular),
571 \begin_inset Formula $y_{j}$
574 is the spherical Bessel function of second kind (singular), and
575 \begin_inset Formula $h_{n}^{(1)},h_{n}^{(2)}$
578 are the Hankel functions a.k.a.
579 spherical Bessel functions of third kind.
580 In spherical vector waves,
581 \begin_inset Formula $j_{n}$
584 corresponds to regular waves,
585 \begin_inset Formula $h^{(1)}$
588 corresponds (by the usual convention) to outgoing waves, and
589 \begin_inset Formula $h^{(2)}$
592 corresponds to incoming waves.
593 To describe scattering, we need two sets of waves with two different types
594 of spherical Bessel functions
595 \begin_inset Formula $z_{n}^{(J)}$
599 Most common choice is
600 \begin_inset Formula $J=1,3$
603 , because if we decompose the field into spherical waves centered at
604 \begin_inset Formula $\vect r_{0}$
607 , the field produced by other sources (e.g.
608 spherical waves from other scatterers or a plane wave) is always regular
610 \begin_inset Formula $\vect r_{0}$
614 Second choice which makes a bit of sense is
615 \begin_inset Formula $J=3,4$
618 as it leads to a nice expression for the energy transport.
621 \begin_layout Subsection
625 \begin_layout Standard
629 \begin_layout Subsection
630 \begin_inset Formula $z\to0$
636 \begin_layout Standard
639 j_{n}(z) & \sim & z^{n}/(2n+1)!!\\
640 h_{n}^{(1)}(z)\sim iy(z) & \sim & -i\left(2n+1\right)!!/z^{n+1}
648 \begin_layout Section
649 Spherical vector waves
652 \begin_layout Standard
654 \begin_inset Formula $M,N,\psi,\chi,\widetilde{M},\widetilde{N},u,v,w,\dots$
657 , sine/cosine convention (B&H), ...
660 \begin_layout Standard
661 There are two mutually orthogonal types of divergence-free (everywhere except
662 in the origin for singular waves) spherical vector waves, which I call
663 electric and magnetic, given by the type of multipole source to which they
665 This is another distinction than the regular/singular/ingoing/outgoing
666 waves given by the type of the radial dependence (cf.
668 \begin_inset CommandInset ref
670 reference "sec:Spherical-Bessel-functions"
675 Oscillating electric current in a tiny rod parallel to its axis will generate
676 electric dipole waves (net dipole moment of magnetic current is zero) moment
677 , whereas oscillating electric current in a tiny circular loop will generate
678 magnetic dipole waves (net dipole moment of electric current is zero).
681 \begin_layout Standard
682 In the usual cases we encounter, the part described by the magnetic waves
686 \begin_layout Standard
687 The expression with Bessel function derivatives appearing below in the electric
688 waves can be rewritten using (DLMF 10.51.2)
691 \frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}=\frac{\ud z_{n}^{j}\left(kr\right)}{\ud(kr)}+\frac{z_{n}^{j}\left(kr\right)}{kr}=z_{n-1}^{j}\left(kr\right)-n\frac{z_{n}^{j}\left(kr\right)}{kr}.
699 \begin_layout Subsection
703 \begin_layout Standard
704 Definition [T](2.40);
705 \begin_inset Formula $\widetilde{\vect N}_{mn}^{(j)},\widetilde{\vect M}_{mn}^{(j)}$
708 are the electric and magnetic waves, respectively:
711 \begin_layout Standard
714 \widetilde{\vect N}_{mn}^{(j)} & = & \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
715 & & +\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}\\
716 \widetilde{\vect M}_{mn}^{(j)} & = & \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
724 \begin_layout Subsection
728 \begin_layout Standard
729 are the electric and magnetic waves, respectively:
732 \begin_layout Standard
735 \vect N_{mn}^{(j)} & = & \frac{n(n+1)}{kr}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
736 & & +\left[\tau_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\pi_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr\,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}\\
737 \vect M_{mn}^{(j)} & = & \left[i\pi_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tau_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
745 \begin_layout Subsection
749 \begin_layout Standard
750 Definition [K](2.4.6);
751 \begin_inset Formula $\vect u_{\tau lm},\vect v_{\tau lm},\vect w_{\tau lm}$
755 \begin_inset Formula $j=3,1,4$
759 outgoing, regular and incoming waves.
760 The first index distinguishes between the electric (
761 \begin_inset Formula $\tau=2$
765 \begin_inset Formula $\tau=1$
769 Kristensson uses a multiindex
770 \begin_inset Formula $n\equiv(\tau,l,m)$
773 to simlify the notation.
776 \left(\vect{u/v/w}\right)_{2lm} & = & \frac{1}{kr}\frac{\ud\left(kr\,z_{l}^{(j)}\left(kr\right)\right)}{\ud\,kr}\vect A_{2lm}\left(\hat{\vect r}\right)+\sqrt{l\left(l+1\right)}\frac{z_{l}^{(j)}(kr)}{kr}\vect A_{3lm}\left(\hat{\vect r}\right)\\
777 \left(\vect{u/v/w}\right)_{1lm} & = & z_{l}^{(j)}\left(kr\right)\vect A_{1lm}\left(\hat{\vect r}\right)
785 \begin_layout Subsection
790 \begin_layout Standard
792 \begin_inset CommandInset citation
795 key "xu_calculation_1996"
799 with unnormalised Legendre polynomials:
802 \left(\vect{u/v/w}\right)_{1lm} & = & \left(\mbox{CS}\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}\frac{\vect N_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
803 \left(\vect{u/v/w}\right)_{1lm} & = & \left(\mbox{CS}\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}\frac{\vect M_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
809 \begin_inset Formula $-1$
812 in Kristensson's text.
814 be careful about the translation coefficients and
815 \begin_inset CommandInset citation
818 key "xu_calculation_1996"
822 , Xu's text is a bit confusing.
825 \begin_layout Subsection
826 Relation between Kristensson and Taylor
827 \begin_inset CommandInset label
829 name "sub:Kristensson-v-Taylor"
836 \begin_layout Standard
837 Kristensson's and Taylor's VSWFs seem to differ only by an
838 \begin_inset Formula $l$
841 -dependent normalization factor, and notation of course (n.b.
842 the inverse index order)
845 \left(\vect{u/v/w}\right)_{2lm} & = & \frac{\widetilde{\vect N}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
846 \left(\vect{u/v/w}\right)_{1lm} & = & \frac{\widetilde{\vect M}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
854 \begin_layout Section
858 \begin_layout Subsection
862 \begin_layout Standard
863 \begin_inset Formula $x$
867 \begin_inset Formula $z$
870 -propagating plane wave,
871 \begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
877 \vect E & = & -i\left(p_{mn}\widetilde{\vect N}_{mn}^{(1)}+q_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)\\
878 p_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\tau}_{mn}(1)\\
879 q_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\pi}_{mn}(1)
884 while it can be shown that
887 \tilde{\pi}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
888 \tilde{\tau}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}-\delta_{m,-1}\right)
896 \begin_layout Subsection
900 \begin_layout Standard
901 \begin_inset Formula $x$
905 \begin_inset Formula $z$
908 -propagating plane wave,
909 \begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
915 \vect E=\sum_{n}a_{n}\vect v_{n}
923 a_{1lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
924 a_{2lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)
932 \begin_layout Section
936 \begin_layout Standard
937 In this section I summarize the formulae for power
938 \begin_inset Formula $P$
941 radiated from the system.
942 For an absorbing scatterer, this should be negative (n.b.
943 sign conventions can be sometimes confusing).
944 If the system is excited by a plane wave with intensity
945 \begin_inset Formula $E_{0}$
948 , this can be used to calculate the absorption cross section (TODO check
949 if it should be multiplied by the 2),
952 \sigma_{\mathrm{abs}}=-\frac{2P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
960 \begin_layout Subsection
962 \begin_inset CommandInset label
964 name "sub:Radiated enenergy-Kristensson"
971 \begin_layout Standard
973 [K]2.6.2; here this form of expansion is assumed:
976 \vect E\left(\vect r,\omega\right)=k\sqrt{\eta_{0}\eta}\sum_{n}\left(a_{n}\vect v_{n}\left(k\vect r\right)+f_{n}\vect u_{n}\left(k\vect r\right)\right).\label{eq:power-Kristensson-E}
982 \begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
985 is the wave impedance of free space and
986 \begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
989 is the relative wave impedance of the medium.
993 \begin_layout Standard
994 The radiated power is then (2.28):
997 P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right).
1002 The first term is obviously the power radiated away by the outgoing waves.
1003 The second term must then be minus the power sucked by the scatterer from
1005 If the exciting wave is plane, it gives us the extinction cross section
1006 \begin_inset Formula
1008 \sigma_{\mathrm{tot}}=-\frac{\sum_{n}\Re\left(f_{n}a_{n}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
1016 \begin_layout Subsection
1020 \begin_layout Standard
1021 Here I derive the radiated power in Taylor's convention by applying the
1022 relations from subsection
1023 \begin_inset CommandInset ref
1025 reference "sub:Kristensson-v-Taylor"
1029 to the Kristensson's formulae (sect.
1031 \begin_inset CommandInset ref
1033 reference "sub:Radiated enenergy-Kristensson"
1040 \begin_layout Standard
1041 Assume the external field decomposed as (here I use tildes even for the
1042 expansion coefficients in order to avoid confusion with the
1043 \begin_inset Formula $a_{n}$
1047 \begin_inset CommandInset ref
1049 reference "eq:power-Kristensson-E"
1054 \begin_inset Formula
1056 \vect E\left(\vect r,\omega\right)=\sum_{mn}\left[-i\left(\tilde{p}_{mn}\vect{\widetilde{N}}_{mn}^{(1)}+\tilde{q}_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)+i\left(\tilde{a}_{mn}\widetilde{\vect N}_{mn}^{(3)}+\tilde{b}_{mn}\widetilde{\vect M}_{mn}^{(3)}\right)\right]
1061 (there is minus between the regular and outgoing part!).
1062 The coefficients are related to those from
1063 \begin_inset CommandInset ref
1065 reference "eq:power-Kristensson-E"
1070 \begin_inset Formula
1072 \tilde{p}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{2nm},\quad\tilde{q}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{1nm},
1078 \begin_inset Formula
1080 \tilde{a}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{2nm},\quad\tilde{b}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{1nm}.
1085 The radiated power is then
1086 \begin_inset Formula
1088 P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}\eta}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
1093 If the exciting wave is a plane wave, the extinction cross section is
1094 \begin_inset Formula
1096 \sigma_{\mathrm{tot}}=\frac{1}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}k^{2}\eta_{0}\eta}\sum_{m,n}n(n+1)\left(\Re\left(a_{mn}p_{mn}^{*}\right)+\Re\left(b_{mn}q_{mn}^{*}\right)\right)
1104 \begin_layout Subsection
1108 \begin_layout Standard
1109 \begin_inset CommandInset citation
1112 key "jackson_classical_1998"
1117 \begin_inset Formula
1119 P=\frac{Z_{0}}{2k^{2}}\sum_{l,m}\left[\left|a_{E}(l,m)\right|^{2}+\left|a_{M}(l,m)\right|^{2}\right]
1127 \begin_layout Section
1131 \begin_layout Subsection
1132 Far-field asymptotic solution
1135 \begin_layout Standard
1137 \begin_inset CommandInset citation
1140 key "pustovit_plasmon-mediated_2010"
1144 and Jackson (9.169) and around.
1147 \begin_layout Subsection
1151 \begin_layout Chapter
1152 Single particle scattering and Mie theory
1155 \begin_layout Standard
1156 The basic idea is simple.
1157 For an exciting spherical wave (usually the regular wave in whatever convention
1158 ) of a given frequency
1159 \begin_inset Formula $\omega$
1163 \begin_inset Formula $\zeta'$
1166 (electric or magnetic), degree
1167 \begin_inset Formula $l'$
1171 \begin_inset Formula $m'$
1174 , the particle responds with waves from the complementary set (e.g.
1175 outgoing waves), with the same frequency
1176 \begin_inset Formula $\omega$
1180 \begin_inset Formula $\zeta$
1184 \begin_inset Formula $l$
1188 \begin_inset Formula $m$
1191 , in a way that the Maxwell's equations are satisfied, with the coefficients
1193 \begin_inset Formula $T_{l,m;l',m'}^{\zeta,\zeta'}(\omega)$
1197 This yields one row in the scattering matrix (often called the
1198 \begin_inset Formula $T$
1202 \begin_inset Formula $T(\omega)$
1205 , which fully characterizes the scattering properties of the particle (in
1206 the linear regime, of course).
1207 Analytical expression for the matrix is known for spherical scatterer,
1208 otherwise it is computed numerically (using DDA, BEM or whatever).
1209 So if we have the two sets of spherical wave functions
1210 \begin_inset Formula $\vect f_{lm}^{J_{1},\zeta}$
1214 \begin_inset Formula $\vect f_{lm}^{J_{2},\zeta}$
1218 \begin_inset Quotes sld
1222 \begin_inset Quotes srd
1225 wave has electric field given as
1226 \begin_inset Formula
1228 \vect E_{\mathrm{inc}}=\sum_{\zeta'=\mathrm{E,M}}\sum_{l',m'}c_{l'm'}^{\zeta'}\vect f_{l'm'}^{\zeta'},
1234 \begin_inset Quotes sld
1238 \begin_inset Quotes srd
1242 \begin_inset Formula
1244 \vect E_{\mathrm{scat}}=\sum_{\zeta',l',m'}\sum_{\zeta,l,m}T_{l,m;l',m'}^{\zeta,\zeta'}c_{l'm'}^{\zeta'}\vect f_{lm}^{\zeta},
1249 and the total field around the scaterer is
1250 \begin_inset Formula $\vect E=\vect E_{\mathrm{ext}}+\vect E_{\mathrm{scat}}$
1256 \begin_layout Section
1257 Mie theory – full version
1260 \begin_layout Standard
1261 \begin_inset Formula $T$
1264 -matrix for a spherical particle is type-, degree- and order- diagonal,
1266 \begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)=0$
1270 \begin_inset Formula $l\ne l'$
1274 \begin_inset Formula $m\ne m'$
1278 \begin_inset Formula $\zeta\ne\zeta'$
1282 Moreover, it does not depend on
1283 \begin_inset Formula $m$
1287 \begin_inset Formula
1289 T_{l,m;l',m'}^{\zeta,\zeta'}(\omega)=T_{l}^{\zeta}\left(\omega\right)\delta_{\zeta'\zeta}\delta_{l'l}\delta_{m'm}
1294 where for the usual choice
1295 \begin_inset Formula $J_{1}=1,J_{2}=3$
1299 \begin_inset Formula
1301 T_{l}^{E}\left(\omega\right) & = & TODO,\\
1302 T_{l}^{M}(\omega) & = & TODO.
1310 \begin_layout Section
1311 Long wave approximation for spherical nanoparticle
1314 \begin_layout Standard
1316 \begin_inset CommandInset citation
1319 key "pustovit_plasmon-mediated_2010"
1326 \begin_layout Section
1327 Note on transforming T-matrix conventions
1330 \begin_layout Standard
1331 T-matrix depends on the used conventions as well.
1332 This is not apparent for the Mie case as the T-matrix for a sphere is
1333 \begin_inset Quotes sld
1337 \begin_inset Quotes srd
1341 But for other shapes, dipole incoming field can induce also higher-order
1342 multipoles in the nanoparticle, etc.
1343 The easiest way to determine the transformation properties is to write
1344 down the total scattered electric field for both conventions in the form
1345 \begin_inset Formula
1347 \vect E_{\mathrm{scat}}=\sum_{n'}\sum_{n}T_{n'}^{n}c^{n'}\vect f_{n}=\sum_{n'}\sum_{n}\widetilde{T}_{n'}^{n}\widetilde{c}^{n'}\widetilde{\vect f}_{n}
1352 where we merged all the indices into single multiindex
1353 \begin_inset Formula $n$
1357 \begin_inset Formula $n'$
1361 This way of writing immediately suggest how to transform the T-matrix into
1362 the new convention if we know the transformation properties of the base
1363 waves and expansion coefficients, as it reminds the notation used in geometry
1365 \begin_inset Formula $c^{\alpha}$
1369 \begin_inset Quotes sld
1373 \begin_inset Quotes srd
1377 \begin_inset Formula $\vect f_{\alpha}$
1381 \begin_inset Quotes sld
1385 \begin_inset Quotes srd
1389 Obviously, T-matrix is then
1390 \begin_inset Quotes sld
1393 tensor of type (1,1)
1394 \begin_inset Quotes srd
1397 , and it transforms as vector coordinates (i.e.
1398 wave expansion coefficients) in the
1399 \begin_inset Formula $n$
1402 (outgoing wave) indices and as form coordinates in the
1403 \begin_inset Formula $n'$
1406 (regular/illuminating wave) indices.
1407 Form coordinates change in the same waves as base vectors
1410 \begin_layout Subsection
1411 Kristensson to Taylor
1414 \begin_layout Standard
1415 For instance, let us transform between from the Kristensson's to Taylor's
1417 We know that the Taylor's base vectors are
1418 \begin_inset Quotes sld
1422 \begin_inset Quotes srd
1426 \begin_inset Formula $\widetilde{\vect N}_{ml}^{(3/1/4)}=\sqrt{l(l+1)}\left(\vect{u/v/w}\right)_{2lm}$
1429 etc, so the coefficients must be smaller by the reciprocal factor, e.g.
1431 \begin_inset Formula $\tilde{a}_{ml}=f_{2lm}/\sqrt{l(l+1)}$
1434 (now we assume that there are no other prefactors in the expansion of the
1435 field, they are already included in the coefficients).
1436 Then the T-matrix in the Taylor's convention (tilded) can be calculated
1437 from the T-matrix in the Kristensson's convention as
1438 \begin_inset Formula
1440 \underbrace{\widetilde{T}_{\zeta'l'm'}^{\zeta lm}}_{\mbox{Taylor}}=\frac{\sqrt{l'(l'+1)}}{\sqrt{l(l+1)}}\underbrace{T_{\zeta'l'm'}^{\zeta lm}}_{\mbox{Krist.}}\,_{\leftarrow\mbox{illuminating}}^{\leftarrow\mbox{outgoing}}.
1448 \begin_layout Subsubsection
1449 scuff-tmatrix output
1452 \begin_layout Standard
1453 Indices of the outgoing wave (without primes) come first, illuminating regular
1454 wave (with primes) second in the output files of scuff-tmatrix.
1455 It seems that it at least in the electric part, the output of scuff-tmatrix
1456 is equivalent to the Kristensson's convention.
1457 Not sure whether it is also true for the E-M cross terms.
1460 \begin_layout Chapter
1464 \begin_layout Section
1465 xyz pure free-space dipole waves in terms of SVWF
1468 \begin_layout Section
1469 Mie decomposition of Green's function for single nanoparticle
1472 \begin_layout Chapter
1473 Translation of spherical waves: getting insane
1476 \begin_layout Standard
1477 Cruzan's formulation, Xu's normalisation
1478 \begin_inset CommandInset citation
1481 key "xu_efficient_1998"
1486 \begin_inset Formula
1488 B_{m,n,\mu,\nu}=\underbrace{\left(-1\right)^{-m}\frac{\left(2\nu+1\right)\left(n+m\right)!\left(\nu-\mu\right)!}{2n\left(n+1\right)\left(n-m\right)!\left(\nu+\mu\right)!}\sum_{q=1}^{Q_{max}^{-m,n,\mu,\nu}}i^{p+1}\sqrt{\left(\left(p+1\right)^{2}-\left(n-\nu\right)^{2}\right)\left(\left(n+\nu+1\right)^{2}-\left(p+1\right)^{2}\right)}b_{-m,n,\mu,\nu}^{p,p+1}}_{\mbox{(without the \ensuremath{\sum})}\equiv B_{m,n,\mu,\nu}^{q}}z_{p+1}P_{p+1}e^{i\left(\mu-m\right)\phi},
1494 \begin_inset CommandInset citation
1496 after "(28,5,60,61)"
1497 key "xu_efficient_1998"
1502 \begin_inset Formula $p\equiv n+\nu-2q$
1506 \begin_inset Formula $Q_{max}^{-m,n,\mu,\nu}\equiv\min\left(n,\nu,\frac{n+\nu+1-\left|\mu-m\right|}{2}\right)$
1510 \begin_inset Formula
1512 b_{-m,n,\mu,\nu}^{p,p+1}\equiv\left(-1\right)^{\mu-m}\left(2p+3\right)\sqrt{\frac{\left(n-m\right)!\left(\nu+\mu\right)!\left(p+m-\mu+1\right)!}{\left(n+m\right)!\left(\nu-\mu\right)!\left(p-m+\mu+1\right)!}}\begin{pmatrix}n & \nu & p+1\\
1514 \end{pmatrix}\begin{pmatrix}n & \nu & p\\
1524 \begin_layout Chapter
1525 Multiple scattering: nice linear algebra born from all the mess
1528 \begin_layout Chapter
1529 Quantisation of quasistatic modes of a sphere
1532 \begin_layout Standard
1533 \begin_inset CommandInset bibtex
1535 bibfiles "Electrodynamics"